On the interaction between marine boundary layer cellular cloudiness and surface heat fluxes

Jan Kazil^{1,2} Graham Feingold²

- 1) University of Colorado, CIRES
- 2) NOAA Earth System Research Laboratory

Closed- and open cells

Outline

- Do cellular cloud states shape surface heat fluxes?
- Do the surface heat fluxes feed back to the cellular state?
 - (Specifically: In the open-cell state?)
- WRF(/Chem)
 - Low geostrophic wind speed (1.4 m s⁻¹)
 - Perpetual night
- Insights
 - into the "mechanics" of the cloudy MBL
 - for global modeling

Simulations

Closed cells

FT air (+ inert tracer)

Open cells

Open cells – surface air temperature

Open cells – surface air temperature

Open cells – surface sensible heat flux

Open cells – surface sensible heat flux

Open cells – surface latent heat flux

Open cells

- Horizontal spatial structure of the open-cell state
 - → Imprint on surface temperature, sensible heat flux
 - → Less pronounced for surface latent heat flux
- Mechanism:
 - Precipitation, cold downdrafts, cold pools
- Cloud optical depth predicts distribution of surface quantities with a lead time of ~ 30 min
- (Low wind speed)

- **→**Open-cell simulation
- → Prescribe surface heat fluxes from closed-cell state

→ Collapse

- → The open-cell state creates conditions that are conducive to its maintenance
- →Specifically, the enhanced surface sensible heat flux in the open-cell state extends its lifetime

Sub-gridscale variability

- No sub-grid variability of the surface heat fluxes in global models
 - Does this matter?
- → Homogenize surface heat fluxes
 - Closed-cell state
 - Open-cell state
- → Very small effect on cloud properties in the considered cases
- Similar result obtained by Seifert and Heus (ACP, 2013) for trade wind cumuli
- → Global models need not to represent subgridscale variability in surface heat fluxes

Closed cells

FT air (+ inert tracer)

Closed cells – surface air temperature

Closed cells – surface water vapor

Closed cells – surface sensible heat flux

Closed cells – surface latent heat flux

Closed cells

- Horizontal spatial structure of the closed-cell state
 - → Imprint on surface temperature / water vapor
 - → Surface heat fluxes
- Entrainment of dry/warm air into the boundary layer
 - Suppresses sensible heat flux
 - Promotes latent heat flux
- (30 m vertical resolution ... over-entrainment?)